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One gluon, two gluon: multigluon production via high
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ABSTRACT: We develop an approach for calculating the inclusive multigluon production
within the JIMWLK high energy evolution. We give a formal expression of multigluon
cross section in terms of a generating functional for arbitrary number of gluons n. In the
dipole limit the expression simplifies dramatically. We recover the previously known re-
sults for single and double gluon inclusive cross section and generalize those for arbitrary
multigluon amplitude in terms of Feynman diagramms of Pomeron - like objects coupled
to external rapidity dependent field s(n). We confirm the conclusion that the AGK cutting
rules in general are violated in multigluon production. However we present an argument
to the effect that for doubly inclusive cross section the AGK diagramms give the leading
contribution at high energy, while genuine violation only occurs for triple and higher inclu-
sive gluon production. We discuss some general properties of our expressions and suggest
a line of argument to simplify the approach further.
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1. Introduction

The study of high energy hadronic scattering and the physics of saturation has been a
very active area of research in recent years [[-[. The effort has bifurcated recently with
one branch concentrating on understanding dynamics of Pomeron loops [§—[[3] while the
other one pushing towards better understanding of more detailed aspects of JIMWLK
evolution [B, fi], such as relation to the QCD Regge theory [i4, [J and calculation of
observables less inclusive than the total cross section [Ld-[1d]. The latter line of research
seems especially relevant since we understand by now that the total cross section cannot
be calculated perturbatively at asymptotically high energies, even if the Pomeron loops are
taken into account [q].

The present paper is devoted to a detailed discussion of multigluon production in
the JIMWLK approach. The study of gluon production at high energy was initiated in
a paper by Kovchegov and Tuchin [P1] which calculated the single gluon inclusive cross
section within the dipole model approximation [J]. This was later extended beyond the
dipole model [P, [[7]. The expression for the double gluon inclusive production in the
dipole limit with an arbitrary rapidity interval between the two gluons was obtained by a
real tour de force calculation in [[L6], while a simpler calculation of two gluon production at
the same rapidity but beyond the large N, limit was performed in [[[4]. The double gluon
inclusive cross section was also calculated by Braun [24] in the framework of the BFKL
Pomeron [R3 calculus. One should note that the results of [[[] and [R4] are different, as
the AGK cutting rules [RJ] are violated in [I] while 4] suggests that the AGK violating
contributions are small at high energy.

All the above calculations have been performed on a case by case basis, and at the
moment there is no unified approach that would streamline calculations of an arbitrary
observable of this type. Recently [[[J] we have introduced such a unified formalism for cal-
culation of semi-inclusive observables such as various diffractive and elastic cross sections.
In the present paper our goal is to extend [E] to calculation of multigluon production.

The structure of this paper is the following. In section [ we recall the general formalism
of the high energy evolution as it arises from the evolution of hadronic wave function and
applies to semi-inclusive observables. In section f§ we extend the formalism to include
multigluon production. We write down a formal expression for the generating functional
which generates the inclusive probability of production of n gluons at arbitrary rapidities
Y; and arbitrary transverse momenta k;. We discuss some properties of this expression and
show that it reproduces the known result for the single gluon inclusive case.

In section [| we specify to the dipole model limit in which the problem simplifies con-
siderably. In this limit we can develop a simple diagrammatic technique in terms of the
propagators of BFKL Pomeron-like objects propagating in the external field of the dipole
s-matrix s(n). We confirm that for double inclusive gluon production our result agrees
with [[[6]. We stress that not only the BFKL Pomeron but also other similar objects prop-
agate in the relevant diagrams if the number of produced gluons is greater than one. It is
the presence of these additional objects that violates the AGK cutting rules. The actual



calculation of the multigluon cross section requires the knowledge of the propagators of
these ”cousins” of the BFKL Pomeron. We find the asymptotic behavior of these propaga-
tors for small and large separations and show that the crossover must occur on the scale of
the inverse saturation momentum of the target. Based on the behavior of the propagator
and of the gluon emission vertices we argue that the leading high energy contribution to
double inclusive gluon production still preserves the AGK cutting rules thus reconciling the
results of [[f] and [P4]. We show however that for triple and higher gluon production the
AGK rules are genuinely violated. We formulate an ansatz which incorporates the known
asymptotics of the relevant propagators with the correct crossover scale which we believe
should be a good approximation to physics. We hope that numerical calculations using

this ansatz may be feasible.

2. High energy scattering: the general setup

2.1 Evolution of a wavefunction

In this section we recall the high energy evolution of the hadronic wave function as discussed
in [E’ E’ ’ @]

Consider an arbitrary projectile whose wave function in the gluon Fock space can be

written as
By, = T[al*(2)]10)y, - (2.1)

The gluon creation operator a! depends on the transverse coordinate, and also on the
longitudinal momentum k. The projectile is assumed to have large energy. The gluon
operators which enter eq.(R.1]) therefore all have longitudinal momenta above some cutoff
A. We will refer to these degrees of freedom as ”valence”, |¥) = |v). Henceforth we omit
the dependence on longitudinal momentum in our expressions, as the momentum enters
only as a spectator variable and only determines the total phase space available for the
evolution. The wave function in eq.(2.1]) is arbitrary.

When boosted, the valence wave function gets dressed by an evolution operator 2 [,
4], which depends on the valence degrees of freedom (p) as well as on newly created soft
modes (a). The evolved wave function has the following structure

W)y = Qv(p, a)|v)yy; [0)yo = [v) ® [0a) (2.2)

where |0,) is the Fock vacuum of the Hilbert space of the soft modes. The evolution
operator € is explicitly known in the dilute limit (p — 0) only. In this limit, Q = C,
where C' is the coherent operator

eV A +
; 2, .10 dk a(1.+ fa .+
Cy = EXp 1 d CEbz (CC) Yo W |:(IZ' (k‘ ,x) + ai (k‘ ,CE))} . (23)

The creation operators af (k1) create gluons with soft momenta, which are not present in
the valence state |v). The field b depends only on the valence degrees of freedom. It is



determined as the solution of the ”classical” equation of motion

Biby + g e (x) b5 (x) = g p*(x)
€ij [0:09 — 9;b¢ + ge™ b bS] = 0 (2.4)

where p®(x) is the color charge density operator of the projectile. The coherent opera-
tor C dresses the valence wave function by a cloud of the Weiszacker-Williams gluons.
Operatorially

i
CTAT (k™) C = AF(k*,2) + b} () (2.5)
The evolution of a generic non-diagonal matrix element of any observable O is given
by

AWlOW) . (0I0) 0o+ 5p) Oy le) — (wIO()IY)

dY v Y v, = —(v[H[p] O(p)|v'). (2.6)

Here both states |v) and [v') are boosted by the same amount. With the explicit form of
the evolution operator C' the evolution Hamiltonian is obtained as

KLwMII+;, O d®2 200\ A
H o1 = Qi (2) Qi (2) (2.7)
op 2w
where the one gluon emission amplitudes Q¢ (z) is defined as

Qi (2) = R™(2)Vgi(2) — b)), (2.8)

with the "dual Wilson line” R

R(2)® = [Pexp/oldz TCﬁrb. (2.9)

Z, 2~

Here by, r are solutions of the classical equations of motion with sources given by the
generators of the left/right color rotations Jy, p defined as

Jh(x) = —tr {R(m)T“ 5RT5(9U) } , Ji(x) = —tr {T“R(:c)ﬁ(x)} ,
Ji(x) = [R(x)Jr()]". (2.10)

The rotations have an alternative representation in terms of the charge density operators:
Ji(x) = p(z,x” =1); Ji(x) = p*(x,z” =0). (2.11)

The KLWMIJ+ Hamiltonian reduces to the KLWMIJ Hamiltonian when we keep the linear
approximation for the classical field b:

be(z) = % / d%((j:ig; P(2). (2.12)



and then

) = [ EE=I R - B Tha). (213)
T —z

It is the last form that we will use explicitly throughout this paper although generalization

to KLWMIJ+ does not present any difficulties.

Within the more general approach including the Pomeron loops, the evolution Hamil-
tonian can be written in terms of the n-gluon ”emission amplitudes” Q,, [L5].

Hip. 5] = gy Oul0 (0.0 0 (Rp Ry, = 3 QUAIQURL. (1

Each @,, depends on transverse coordinates and has a set of n Lorentz and color indices
which we do not indicate explicitly. Unfortunately the explicit form of @, is not known at
present.

Throughout this paper we will be thinking of the diagonal matrix element (v|OJv) as
being computed through the path integral representation

W O ) = /Dp O Wip|. (2.15)

As discussed in [f, [J] this representation requires endowing p(z) by additional ordering
coordinate, but this subtlety is of no concern to us in this paper.

2.2 High energy scattering

Let us now consider the process whereby the projectile discussed above scatters on a target.
The target is described by some distribution of target chromoelectric fields. We are working
in the lightcone gauge natural to the projectile wave function, A~ = 0. In this gauge the
high energy scattering matrix of a single gluon projectile at transverse position x on the
target is given by the eikonal factor

S(x;0,27) = P exp{i/ox dy~ T op(z,y7 )} S(z) = S(x;0,1). (2.16)

The field o is the large AT component created by the target color charge density. It
obeys the classical equation of motion and is determined by the color charge density of the

target pr(x) via . E E

0,2 )T = (e —y) {810,027 o2 ) T S0} . (217)

For a composite projectile which has some distribution of gluons in its wave function the
eikonal S-matrix can be written in the form analogous to S(x), see [[(]

S"lar] = (PISIP) = [ dpr WTlps) p{ /0 Ly / d%p%(:c,y)a%(x,y)}
(2.18)



where S is the second quantized S-matrix operator of QCD. The quantity pp(x;) is the
color charge density in the projectile wave function at a given transverse position, while
W¥[p] can be thought of as the weight functional which determines the probability density
to find a given configuration of color charges in the projectile. For a single gluon p®(x;) =
T452(x; — 2?), and eq.(2.13) reduces to eq.(R-16).

The total S-matrix of the scattering process at a given rapidity Y is given by
SY) = / Doy W% [ar(z,27)] Egljyo[agp(x,x*)]. (2.19)

In eq. (R.19) we have chosen the frame where the target has rapidity Yy while the projectile
carries the rest of the total rapidity Y. Lorentz invariance requires S to be independent of
Yo.

The high energy evolution of the projectile wave function discussed in the previous
subsection leads to the following expression for the evolution of the forward scattering
matrix element:

d a _ 0 _
d—YS =— / Do Wi [ar(v,27)] H [QT’E} SPPy lar(z,27)]. (2.20)

Here the (Hermitian) high energy evolution Hamiltonian H can be viewed as acting either
to the right or to the left:
0

8—YEP :—H|:C¥T,

) 0 0
— | SPPlar]; — W' =-H — | Whaz]. (221
e R ar, 50| Wlar). (221
As was shown in [I(J] in order for the total S-matrix to be Lorentz invariant and symmetric
between the projectile and the target, the evolution Hamiltonian H must be self dual.
This is to say that the full evolution Hamiltonian which includes Pomeron loops has to be

invariant under the Dense-Dilute Duality transformation

o o

oflw,z) = Z5;)‘1(36,31:_)’ da(z,z7)

— —ip*(x,x7), S — R (2.22)
However if one considers the situation where the target is large and the projectile is small
(the dense-dilute limit), the symmetry between the target and the projectile is irrelevant. In
the limit when the color charge density of the target is parametrically large (p® = O(1/ay))
the Hamiltonian is given by the JIMWLK+ expression [, [

HITMWLKS _ / Q%(2) Q4(2) (2.23)

with Q[S] obtained from Q[R] (B-§) by the substitution R — S. In particular in the
JIMWLK limit

Q) = [ =I5 - 5] TSl (2.24)

Thus for processes involving small perturbative projectile, the evolution of its wave function

HKLWMIJ

W pp] is governed by while the evolution of the projectile averaged S-matrix

¥[S] is given by H/IMWLEK,



2.3 Semi-inclusive reactions

Consider an observable @ which depends only on the projectile degrees of freedom, which
we want to calculate in the asymptotic state long time after the scattering has taken place.
We assume that the target has been boosted to rapidity Yy and that the operator O depends
on degrees of freedom between the rapidity Yo + y and Y. As discussed in [[Ig] such an

observable is given by

N

(O) = (T, (Py—vy—y| C} (1 = $T)Cy O Cf (1 = 8) Cy |Py—vy—y) Try) (2.25)

where |Ty,) is the wave function of the target boosted to rapidity Y and |Py_y,—y ) is the
wave function of the projectile boosted to rapidity Y — Yy — y. To calculate the evolution
of this observable with respect to y at fixed Yy and Y — Yy — y, we consider first the same
expression before taking its average over the target wave function

0[S,5] = (Py_y,—|CH (1 = STy, O CF (1 = 8)Cy |Pr—yy—y)- (2.26)
The two are related by
(O) = (Ty,| O[S, S)|s_ g |Tyy) = /DSDSW;O[S] 5(S — S) 018, 9]. (2.27)

The derivation of the evolution is similar to that given in the first subsection:

dO[S,S] _ . OyraylS. 5] = O[S, 9]

. 2.28
dy Ay—0 Ay ( )

We write Cyyay = Cay Cy and expand Cay up to quadratic order in a:

ey+AyA dk+ .‘_
o . 2. 1ha a(r.+ e+ _
CAZJ_ {1+Z/dxbl(x)/ey/\ 7T1/2|k+|1/2 |:a’2(k 7'%') +al (k 7x))i|
ey+AyA + 2
dk
_ 2 .10 % et fa .+
(/dm““”L“\ ﬂﬁ%ﬂUQEAk,m—%%<k,mﬂ> @)
We now recall the identities derived in [[L1]:

p*ST) = JgIS]S ) Sp" ) = JEIS]S )
(]t 81 = 18] (9] 81 WISt = IS WIS (230
Combining the expansion (2.29) and the identities (R.30) we obtain
d

d—yO[S, S| = — H3[S,S] O[S, 5] (2.31)
2, B
(8.5 = [ 57 (@ 18] + Qi 18] (232)
Let us introduce the notations
H,[S] = H/IMWLE (g H,[S,S] = H([S] + Hi[S].



The Hamiltonian H3 was first introduced in [[[§]. It is straightforward to prove that the
Hamiltonian H3 obeys two useful identities. First, when acting on a function F' which
depends on the product S St only it reduces to the action of the Hamiltonian H;:

Hs[S, 5] F[S ST = H,[SST] F[SST]. (2.33)

Second, when H3 acts on an arbitrary function F[S, S] and then S is set to be equal S it
is again equivalent to the action of Hi:

H3[S,S] F[S,ST|s_s = H1[S] F[S,S]. (2.34)

eq. (R.34) can be written in the following form
/ DS5(S — S) Hy[S, S] FIS, ST = Hy[S] / DS5(S — S)FIS, 51 (2.35)

Referring back to eq.(R.31)) we see that for any observable the evolution operator between
rapidity Y7 and Y5 is

Ug(Yl, YQ) = exXp [— Hg(YQ — Yl)] . (236)

The preceeding discussion is easily generalized by considering a product of n + 1 local
in rapidity operators O; each one depending only on degrees of freedom at fixed rapidity
Yo + Y;. We will call O (which plays a special role) the operator which depends only on
the valence degrees of freedom of the projectile at rapidity Y. The expectation value for
such an observable reads

(O, ... Op) = / DS DSWE[S]5(S — 5) (2.37)
X Ug(Yo, Yo + Yn)On[S, S]Ug(Yn, Yn_l)(’)n_l[S, S] . .Ug(Yo + Yq, Y)Oo[S, 5] .

The operator Op determines what kind of observation is made on the valence degrees of
freedom of the projectile. In the present paper we are interested in observables which are
inclusive over the valence projectile degrees of freedom. For these observables (see [[[9])

O [S,5] = 1 — 2P — uEP[S] + 2iF[sT 5] (2.38)

and this is the expression we use in the rest of this paper. If on the other hand the process
of interest is elastic over the projectile, we would have

OpelasticlS, 8] = (1 — =F7[ST]) (1 — =¢71S]). (2.39)

Finally for example jets produced in association with diffractive vector meson production
at projectile's rapidity one has Oy = |¥) (¥| with ¥ be a wavefunction of a final vector
meson state.



3. Inclusive gluon production

3.1 Single inclusive gluon production

Following the derivation of the previous section we define the operator @g corresponding

to an inclusive production of a gluon with momentum k; at rapidity Yy + Y1

_ d . A R
015,81 = 4-0uIC, (1 = 800} iy €1 = S0 (81
eY A
Ak, y) = / di* al(ky, k) af (kb (3.2)
e(YO+Y1)A

In the dilute limit with the operator C' given in eq.(R.J) the averaging over the state |0,)
can be performed explicitly. This requires expanding the exponential operator C' to second

order in Taylor expansion. The result is

&’z d*z ik1(z—2) na a(z [Q
O)k) = [ 52— Qi(2, 1)) Q¢ (=.[8)) (33)
with the gluon production amplitude @ the same as in eq.(R.24). Substituting eq. (B.J)
into equation eq. (£:37) and remembering to set S = S in the end of calculation we obtain

for single inclusive gluon production

do

= (a(k, Yo+ Y1) O 4
dyldk% <’I’L( 1, 0+ 1)00> (3 )

~ [ DSDSWHISISS — 5 Us(a, Yo+ Y1) Oy (k) Usl¥o + ¥1,¥) 2 F1575)

as only the last term in eq.(-3§) gives a nonvanishing contribution. Using the identity
eq. (R.34) we obtain

do

Y, dk2 :/DSWEO[S] Ul(YOaYO+Y1)/D§5(§ — 8) Oy(k1) Us(Yo + Y1, Y)EEP[STS]
1 4R

- / DSDSWY 1y [S]6(5 — ) Oy(k1) Us(Yo + ¥1,Y) SEF[STS]. (3.5)
Using the fact that 7 evolves according to JIMWLK evolution we can write it as
%Zuﬁ _ / DS DSWE 4. [815(5 — S) (k1) £y, 4 [S15]. (3.6)
Substituting eq.(B.d) and assuming color neutrality of the target this becomes (Yo = Yp+Y))
do  _ as / Gik(z—2) / (z—z)i (Z—y)
dyidki 4n3 J, vy (2 —x)% (2 —y)?

X /DSWYTb[S] tr [(Sg — S1)(Ss — sy)} X

< [JlS, 2l JRIS.uI BE g [8S]]



In order to make contact with the known results [R1, [[7] and also to streamline the future
discussion let us change variables from S to U defined as:

S =5U U=25"S; Ul =1. (3.8)

In the end of the computation we will have to set U = 1.

It is straightforward to derive the following identities

JESs5 = JRlUlsus  JiSllss = S® 2 U]su (3.9)
JES)lss = JelSllsu + JiUlsws  JESllss = JESlsu + S TR [Ulsw -

Using those we obtain

nP (e, ;Y — Yo) = [ 418,21 JAIS, yI= 7y, [7S]]

P = [JRIU.a] TlU, 9 =5 0]

U=1_
3.10)

30)

S=8

—
(=)

The function n?” obeys the BFKL equation. To see this one can use the identities

P

and express n' as a correlator of projectile color charge density operators

nP(z,y) = / Dpp WF(pp] pb(z) p(y) (3.11)

In the dilute limit W evolves with the KLWMIJ Hamiltonian, which when integrated by
parts to act on p p reduces to the BEFKL equation. The final result for single gluon inclusive
production reads

do A [ k-2 / (z — )i (,_E—y)i
z,y z

dpdig ~ 7w ). L=
x nP e,y Y = Yo) [(Tydyy + Todyy — Tocdyy — Togdyy]  (312)

with (T") denoting an S-matrix of a gluonic dipole:
(Tog)y, = / DSWL [S]tx(S] S, (3.13)

3.2 Multi-gluon production

The formal generalization of single gluon inclusive cross section to an arbitrary number of
gluons is straightforward. We first introduce a generating functional Z:

Zlj] = / DSWEIS] / DS6(5 — §) Pe o i [Hs—Ji QR iW] wPPIGEG)  (3.14)

The n-gluon cross section is calculated as !

do ) 5
- 27l lj=0- 3.15
A dk? . dY,dkZ  0j(Yi, k1) 0§ (Y, k) 7] 15=0 (3.15)

'Note that instead of introducing the current j we could introduce two different currents coupled sepa-
rately to Q[S] and Q[S]. That would be in analogy with the Schwinger-Keldish formalism discussed recently
in |

,10,



It is interesting to note that the generating functional Z can be also used to define diffractive
processes with rapidity gap(s). To impose a rapidity within an interval between Y7 and Y3
we simply set j(n, k) = 2 within this interval and zero elsewhere. This procedure changes
the evolution Hamiltonian within this gap to Hy. As discussed in [[LJ] this is precisely what
is needed to forbid gluon emission within the rapidity gap.

=

The formal expression eq.(B.15) is unfortunately of little help as it stands. We can
make a little bit of headway in understanding its structure by introducing the variable U
as in the previous subsection. A straightforward calculation allows one to express both the
Hamiltonian and the gluon production operator as follows

Hy = [S] 1 B[V + Vau[S, U] valsu) = 2 [ QUsiQu), 16)
a . _ ab
0,0 =% [ aeng e Ll 0181 - 80 (5:0: - 5,0)]” 0] +
T,Y,2,Z
+ Thle. ) [(51 - 51 (52U - 5,0] " S0} (317)

where the kernel N is defined in eq.(f.10).

In the new variables the generating functional Z reads:
Y .
z2[j] = /DSDUWYTO[S] U — 1) Pe” Dy W=l QB inb] prppy (34)

and the multigluon production cross section

do
dY; dk% oo dYy, dk2

= /DSDUW&OWI[S] S(U — 1) Oy(k1,[S,U]) Us(Ya, Y1) X
x Og(ka, [S,U]) Us(Ys, Y2)... Og(kn, [S,U)) STy (U], (3.19)

Here we have used the fact that both, the constant function and the delta function are
eigenfunctions of the operators Q¢[z, S| with vanishing eigenvalue. That allowed us to drop
the U-dependent terms in leftmost evolution operator and the S-dependent terms in the
rightmost evolution operator, and thus simply to evolve W7[S] and X7 [U] to the rapidity
of the closest emitted gluon. A further slight simplification that follows from the same
argument is that in Oy(k,) we can drop the second term which involves Jp[S], while in
Oy (k1) we can set U = 1;

Og(kn) — - / ¢ ETI N gz
7T :B7y7z72

a t 1 ab

{01! - shs:vs - 5,0,)]" shpv1] (3.20)
075 ik1(z—2) a T + ab b
Oglkn) = == [ e Noyz 3 22UV (ST = 1) (8= = 8, Jhly. U] +
T,Y,2,2
ab b
+ Jale 31 [(81 - s (5= - 5,]" Thly.01} (3.21)

— 11 —



We note the structure of eq.(B.19) is rather curious from the point of view of the Hilbert
space of the JIMWLK Hamiltonian [L5]. The expression involves the off diagonal matrix
element of the evolution operator with insertions of O,’s between two states which are
products of factors depending on S and U: W, . [S]6(U — 1) and £{7y | [U]. The
factor §(U — 1) on the left is nothing but the Yang ground state of H//MWLK[{]] swhile the
unity on the right is the Yin ground state of H//MWLK[S] [[[§]. Thus the expression for the
multigluon production incorporates some elements of the Dense-Dilute Duality symmetry.
This can possibly give a clue for future progress in calculating multigluon production.

At the moment however despite the simplification of egs.(B.20,B.21) the calculation of
multigluon production within the general JIMWLK looks like a very difficult problem. The
Hamiltonian Hj3 couples S and U in a nonperturbative way and this coupled problem has
to be solved. We note that since the evolution of U is eventually projected onto the Yang
state, one can develop perturbation theory for the U part of the evolution. In particular
writing

U(z) = exp{ip* T} (3.22)
and considering § to be small we can perform expansion in powers of 5. This is useful since
the Yang projection sets 3 to be equal to zero at the end of the calculation. As we shall see
in the next section this strategy is very useful within the dipole model approximation. Here
however, even if § is considered to be small, its interaction with S in Hj is not suppressed.
Thus the first step in this perturbation theory requires solution of the coupled S and (8
theory. This problem is beyond our abilities at the moment. We can make however quite
a bit of headway by restricting to the dipole limit. This we do in the next section in the
hope to come back to the general problem in the future.

4. Multi-gluon production in the dipole limit

In this section we discuss the dipole limit of the formulae derived in the previous section.
We will see that in this limit the multigluon production amplitudes simplify dramatically.
The starting point of our discussion is eq. (B.14).

4.1 The dipole limit

The dipole operator for S and S are defined conventionally as

Szy = %tr[sp(w) SEW)]; Say = %tT[SF(:U) St(y)] . (4.1)

We will also have to consider quadrupole operators

G = 5 tr1Se(@) ShW) Se(w) SEW]: Gayas = 3 1r(Se(x) Sh(y) Sr(u) Sh(w)].
(4.2)
In the discussion of the total cross section the quadrupole operator appears in 1/N sup-
pressed terms, however in less inclusive observables [[9] it can contribute already in the
leading order. This will be the case in our present discussion as well.

- 12 —



To define the dipole model limit we assume that the initial state of the projectile |P)
contains only dipoles. We also make two important approximations. First, we consider
only the leading N part of the evolution. This drastically simplifies the calculations since
in this limit there are no transitions between different singlet states during scattering.
Technically this means [[J that any singlet operator (s or ¢ etc.) satisfies a first order
differential equation in rapidity. Second, we assume the target mean field approximation

in which the target averages for dipoles and quadrupoles factorize.
(s(z.y) s(u, v))r = (s(z,y))r (s(u, v))13 (4.3)
(g(z,y,u,v) (2, 2))r = (a(z,y,u,v))7 (5(2, 2))1
(a(z,y,u,0) q(Z,5,4,0))r = (q(z,y,u, )7 (¢(Z,7,4,0))r

)
(

Physically this approximation is tantamount to assuming no correlations between the target
fields. This is the same approximation as employed in deriving the Kovchegov equation [f.

4.1.1 The Hamiltonian Hj

The action of the JIMWLK Hamiltonian on a function F' which depends only on s and ¢
in the large N limit can be straightforwardly written as:

HITMWERIS) Fls, q) = [Hy + Hy] F[s, ] (4.4)
with
Qg 1)
H, = — M, .. — —_—
s o - Y52 [Sx,z Sz,y S:v,y] (58(1’,:[/)
o
Hq == {_ [M$7y;z + Muﬂ)?Z - L$7u,v,y;z] quyvuﬂ) - Lm7y,u,v;z Sl‘y” Syvu
27 T,Y,U,0,2

- Lx,v,u,y;z Sx,y Su,v + Lx,v,u,v;z qz,yu,z Szv + Lx,y,x,v;z qzy,u,v S,z

+ Lw,y,u,y;z qx,z7u,v SZ,y + Lu,y,u,v;z qu,y,z,’v SU7Z}
B
X —° 4.5
oq(x,y,u,v) (45)

Here in addition to the Weiszacker-Williams kernel

Koy = ((f — j))Q EZ - 22 (4.6)

we have introduced the dipole kernel

2
x —_—
Mﬂ?yy%’«' = K%%?«' + Kyvyvz - Kﬂ?yyvz - KZJ@J«' = ( y) (47)

and the ”quadrupole kernel” [B(, [[1]

(x -2 (y-— Z)z} [(u —2)i _ (v - Z);' (4.8)

L L =
Z,Y,u,viz (ﬂj _ Z)2 (y _ Z)2
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The kernel L can be expressed in terms of the kernel M as

1
vay,uvv;z - 5 [

Myvu;z + vav;z - Myw;z - Mx,U;Z] . (4-9)

For future use we introduce an additional kernel

Nozuz = ((f:;); EZ - 2’2 . (4.10)

The equation for s is the Kovchegov equation [ff], while the equation for ¢ has been derived
in [L6, [9].

The fact that the equation is first order means that the solution for the evolution of
any function of s and ¢ which satisfies the JIMWLK evolution in the dipole limit is [B1], B

Fy[s,q] = Fy—o[sy, qv] (4.11)

with sy and gy solutions of the differential equations

«
Oy s(z,y) = ﬁ My 2 82,2 82,y — Syl (4.12)
$7y72(
and
a
817 q(x,y,u,v) = 2_8 - [Mm,y;z + Mu,v;z - Lm,u,v,y;z] qz,y,u,v
7-(- x7y7u7v7z

z,y,u,0;z Sz,v Syu Lm,v,u,y;z Sz,y Su,v + Lm,v,u,v;z qz,y,u,z Sz,w (413)

+ La:,y,x,v;z 4zy,u,v S,z + Lx,yﬂt,y;z Qa,z,u,0 Sz,y + Lu,y,u,v;z Qa,y,z,0 Su,z

with the initial conditions

SY:O(x,y) = S(x,y)a QYZO(x,y’U,U) = Q(x’y,u?v) . (414)

The quadrupoles and dipoles are not quite independent, in the sense that

q(x,y,y,v) = S(x’v)’ Q('Iayauax) = S(uay)' (415)

It can be checked that eqs. ([E13[E1J) preserve this constraint. That is if the initial
condition at 1 = 0 satisfies eq.({l.15) so does the solution of egs.(f.131.1d) at any rapidity
n.

The dipoles s and the quadrupoles ¢ do not exhaust all color singlet operators that

enter our analysis. We also have to consider quadrupoles of the mixed type

B = 7 tr1Se(@) Sh(w) Sr() Sh(w)]. (116)

These objects appear at the intermediate stages of the calculation even though at the end
of computations (eq. (B.1§)) we always set S = S. The reason this operator appears is
that the projectile averaged scattering matrix E(I]D P in eq.(B.3B.) depends on the prod-
uct S(x)ST(z). The dipole content of the projectile wave function then means that X'
depends on the dipole operator built from S(z)S(x) which is just a special case of ¢°°.
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For the mixed quadrupole ¢*°

s§ _ — . _ _ . _ —1-
qm,y,u,v’S:S = Gz,yu,v; Qryyolg—s = Szw; Gz yxl5=s = 1;
S5 _ = . sS _
qa:,a:,u,v - SU,U? qx,y,u,u - Sm,y- (417)

The action of the JIMWLK Hamiltonian on a function F' which depends on ¢*% in addition
to s and ¢ in the large N limit can be written as:

HJIMWLK[S]F[S,(],QSE] — (Hs + Hq + Hqsg) F[87q7q8§] (418)
with
a _
Hyss = —ﬁ {— [Myy: + Kuy.:] Gooyuw + Ky ey Sup + (4.19)
:B7y7u7v7z
_ - 0
+ (Kﬂfﬂf;z B Kl“,y%z) qgfy,u,v Sz,z t (Ky,y;z - Kr,y;Z)q;fz,uvv S%y} 5qs§(x,y,u,v) .

We also have to derive the dipole limit of the operator Q%[z, S] Q%[%, S] which enters
both the evolution Hamiltonian H3 and the expression for the gluon emission vertex O,.
Again using the large N limits to evolve color singlets we obtain

2Q7[2 51 Qf[z, 8] =

545 55
= ﬁ { (NLZJ%E + Ny,z,uyi) qz,y,u,v +
Z,Y,v,u
+ WNyzwz+ Nozwz) SeySuw + WNyzwz + Nozuz = Nozwz = Nyzuz)
85 85
X QZ,y,u,E qm,z,i,v
+ (Nm,z,v,z - Ny,z,v,%) Sx,z qz,sy,u,v =+ (Ny,z,u,é - Nz,z,u,é) Sz,y Q:i,sz,u,v +
+ WNazwz = Nozuz) 820 Gy + Ny zuz — Nyzoz) Suz qg‘ify,z,v}
1)
X 5o . (4.20)
Yz,y,uv

Note a very important property of eq. ([.20): when acting on a function of s, ¢ and
¢%% the operator does not produce any additional objects. In principle one might have
expected that the operator involves higher mixed multipole operators. If that were the
case we could not have limited ourselves by considering only the set of operators s, ¢ and
¢*% but would have to introduce higher miltipoles. However as it stands taking into account
that 25 P at initial rapidity depends only on ¢*° we need not include additional operators
into consideration at all.

Our goal is to use the fact that we have to put S = S at the end of the calculation
to the utmost and thereby to minimize the number of degrees of freedom which we have
to deal with. To this end we note that the operator O, does not involve derivatives with
respect to s, ¢ and 5, g but only with respect to ¢*¢. This allows us to simplify the evolution
operator Hs by using

[(Hs + H§ + Hq + H(Y) F[Saq; ,§’ C.ﬂ]g q = (HS + Hq) F[S’q;SaQ] (421)

:57(1:
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and substitute s (¢) instead of 5 (¢) in expressions for Oy and Hss.

Since O, depends on derivative with respect to ¢* we cannot set ¢*° equal ¢ from the
outset. We therefore define the "fluctuation” of ¢* by

o 0

S5 _ . o
qx,y,v,u - Qx,y,v,u + t$7yvvvu’ 5q3§ o 5t$7yﬂ),u . (422)

x?y7v’u

As defined above
tx,x,v,u = ta:,y,u,u = 0. (423)

This follows from eq. ({.17).

At the end of the computation we have to set t; ., = 0. We now change variables
from ¢*% to ¢ throughout. Note that H, as defined in eq. ({.5) is proportional to 6/dq at
fixed ¢*5. In order to correctly account for the shift we have to remember that

0 0 1)
—|gss = = — =1q. 4.24

Now we have to express Z in terms of the dipole s, quadrupole ¢, and t. The Hj
Hamiltonian becomes

Hs = Hy + H, + H; (4.25)
with

Qs
Ht - {_ [M$7y§z + Mu,v;z - L$7u,v,y;z] tx,y,u,v + Laﬁ,mu,v;z ta:,y,u,z Sz7v+

2 ﬂ- x?y7u7/U7Z

+ L:B7y7m7v;z tz7y7u7v 81.72 + L‘T7y7u7yaz tx7z7u7v 5Z7y + Lu7y7u7v;z tx7y7z7v Su7z

)
L:B7y7u7viz (tz7y7u7z S:B7U + tm7z7z7v Su7y) - Lx7y7u7v!ztz7y7u7z tx7z7z7v} 6t ° (4'26)

:B7y7u7v

Thus the four point function ¢ satisfies the classical equation

d Qs
d_,r)txvyvuvv = 20 {_ [Ma»ny;z + M%U%Z - vauvvay;z] tz,y,u,v + Lx,v,u,v;z taﬁ,y,u,z Sz7v+
z
+ La@y,x,v;z tz,y7u,v S,z + vayvuvy;z t$7zvuvv Szy + Lu,yvu,v;z ta:7y,z,v Su,z

- L‘T7y7u7v;z (tz7y7u7z 81.71) + tm7z7z7v Su7y) - L‘T7y7u7v;zt'z7y7uvz tm7z7z7v} ° (4'27)

The Hamiltonian H; describes propagation of ¢ in the background field s.

The Hamiltonian eq.(.2G) has the following very useful property. Let us introduce
the equal point limits of the function ¢: the two-point function ¢, , = t;4 2, and the
three point function v = t; 44,0 The functions ¢ and v are not fully independent and
their mutual relation is precisely that of the dipole s and quadrupole g, ¥,y » = ¢z 4. Also
Gz = Yz = 0 as follows from eq. (B17). The evolution of ¢ can be found by taking the
r =9, y=u in eq.(.26) and similarly for v». The equations turns out to be decoupled
from t; 4, With all four coordinates different

Qs

877 ¢J»‘7y = 21 /Mx,y;z [(ﬁx,z + ¢z7y - ¢J17y +¢z7y ¢x,z] (4-28)

z
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Q

1
817 T;Z)m,y,v = ﬁ /{ - §[M:v,y;z + My,v;z + Mx,v;z] ¢:v,y,v + Lm,v,y,v;z ¢:v,y,z Sz,v (429)
z
+ Lx,ym&,v;z wz,y,v SJ»HZ - nyyvyﬂ);z [(¢z7y + 1) w%»’«’vv - ¢z,y Sﬂ%U] } .

The equation for ¢ is equivalent to the Kovchegov equation for 1 + ¢. We will come back
to these equations later.

The coupling of ¢ to s is the origin of the violation of the AGK cutting rule found in [[L§].
In the following we will be expanding the evolution operator exp{—HsY } in powers of ¢
since t has to be set to zero at the end of the calculation. This is obviously tantamount
to perturbation theory in the last ”splitting” term in eq. (4.26). The highest order of
the perturbation theory up to which we have to expand is determined by the number of
emitted gluons. But first we have to rewrite the gluon emission operator eq.(f£.20) in terms
of t.

4.1.2 The gluon emission operator O,

The expression for the gluon emission operator is easily obtain, although it is cumbersome
to write down. First we define for simplicity

0,(k) = 2= / ek =9 A, 7) (4.30)

32

The operator A is linear in functional derivative d/0t. Counting the functional derivative
as a power t~! the operator contains terms of order minus one, zero and one in t.

Az, z2) = A_1(z, 2) + Ao(z, 2) + Ai(z, 2) (4.31)
with
=] ) i,
= x Y, U, V32, 2) ———
73/7“ v 5t$73/7“7v
= / Yy 2,0, 2 + N:v 23U z) Sz,y Su,v — (NI,Z,U,Z + N, 727%2) Qz,yuw
7y7u v
+ (NJ: 2,V y,z,v z) SJ: z QZ,y,u v + ( Y,2,u,2 Nx,z,u,é) Sz,y Qx,z,u,v
+ (N ,2,0,2 x,2,1 z) Szv Qzyu,z T ( Y,2,U,Z y,z,v,i) Su,z dx,y,z,0
0
+ (Ny 2,0,2 + Nx U2 T Nx,z,v,i - Ny,z,u,i) QZ,y,u,Z Qm,z,i,v} ~ (432)
5tx7y7u7/v
o 0
Ag = tﬁc,@a,@ D(x,y,v,u; %, 7,1, 0; 2, 2) S
73/71) u; ZB 3373/7“7”
:/ - J:zvz+Nzuz) T,Y,U,v
T,Y,v,u
+ (Ny 2,0,2 + N:v U2 T Nm,z,v,i - Ny,z,u,i) QZ,y,u,Z tm,z,i,v
+ (Ny,z v,z + Nx JZ UyZ Nx,z,v,é - Ny,z,u,é) Qx,z,é,v tz,y,u,é
+ (N z,2,0,2 — NVy,zv, z) Sx,z tz,y,u,v + (Ny,z,u,i - Nx,z,u,i) Sz,y t:v,z,u,v (433)
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)
+ (N$737U,5 B N%%U,E) Sz tx,y#ﬁ + (Ny7z7u72 B Ny,Zﬂ),f) Su,z tx,yvi,v} 5t

m7y7u7v

~ 1)
A = / V(xayaUaUEZ,Z) t2797“72t$7z727v ot
,y7u v 1’7y7u7v
1)
— / {(Ny,z,v,i + N$7Z7u72 — N%Z,U’g - Ny,z,u,i) tz,y,u,i tx,z,i,v}(;t (434)
,y W x7y7u7v

The explicit form of D and J is given in appendix A. It is also convenient for future

use to define the "vertices” associated with the two point function ¢,

Jo(2,y:2,2) = J(2,y,y,2; 2, 2) (4.35)
= {Ny%w,i (33,2 + Si, - 32 - S 2) + Ny,zp,2 (s 3 + Sg,y - 33,2 - 1) +
+ N$7Z7y72 (8272 + Sazc,y - zy - % ) + Nﬂ%zvl‘,z( §$ + sz - 82,2 - 1) } .

We also separate the part of the vertex D which corresponds to the first line of eq. (:33)
(the virtual term) taken at the points t = v,y =u, =4, y=17

D¢(3:,y; x,y; %, 2) = _(Kz,é,:v + Kz,i,y) 5($ - j) 6(y - ﬂ) . (4'36)

We will also use

Qg

J(@,yu,vik) = 5— | e k=2 (2, y,u,v;2, 2) (4.37)
2,z
Jo(z,y: k) = ;—; e FETD (2,52, 2) (4.38)
2,z
N ik(z— %) [
D(z,y,u,v;Z,y,u,v; k) = 5 e D(z,y,u,v;ZT,y,u,0;2,2) (4.39)
™ 2,2
Dy(z,y; 2,9; k)—g—; /z7zeik(z—z) Dy(w,y;%,9; 2, 2) = —2:;25(56 —)0(y — ). (4.40)

The last element we need to know in order to proceed is the "matrix element” Oy
which characterizes the initial projectile wave function.

4.1.3 The matrix element O

In the dipole limit, the wave function of the incoming projectile is decomposed in the dipole
basis and the S - matrix EOP P depends only on the dipole operator

56718 = 26 504 - (4.41)
This implies
01T 8] = B0 el = S0 A teggal = TOTI A+ Gug] (442)
This expression can be expanded in Taylor series in ¢ (SF7[1] = 1):

5
ST 4 toygal = 14 ) — —~ {H / A2 d*Yi o, i yss 5 } SEPI 4+ t]]emo -

m=1 Z5,Yi,Yi,Tq
(4.43)
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For a projectile containing a single dipole at points z,y the expression is very simple
Egp[l il =1+ toyye =1+ duy- (4.44)

Given these ingredients, we can formulate the rules of calculation of multigluon pro-
duction cross sections in terms of diagrams involving the propagation of the field ¢ in the
external fields s and gq.

4.2 Diagrammatics and Feynman rules

In the dipole limit the generating functional Z reads
Z[jl =1+ /DquDtcS(t) Wi, [s,q] x

o o I3 dn[Hs+ Hy+ Hi= [, Oy(k) 5] (5P + 1) — 258P[s]) . (4.45)

The $F¥[s] term contributes only to the total cross section (j = 0) which is not our interest
in this paper. Since this term does not depend on ¢ it vanishes under the action of O,
and hence does not contribute to particle production. We therefore omit ¥¢*[s] in what
follows. We also omit the unity which vanishes upon differentiation with respect to j.

It is convenient to get rid of Hy and H,, in the evolution operator by rewriting eq. ({.43)
in the "interaction picture” with respect to the Hamiltonian H, + H,.

= /Dt 5(t)e” Jo  dn{Helsn.an] — [ Og(k, [sn.an)) j(km)} SEPI+1]. (4.46)

Here s, and ¢, are “time” dependent external fields, which are solutions of the correspond-
ing equations of motion with initial conditions s,—o = s and ¢;,—o = ¢. In the spirit of the
mean field approximation we have omitted the factor Wgzo which specifies the distribution
of these initial conditions. This factor can be restored if desired.

It is now convenient to organize the calculation as perturbation theory in ¢. The n -
gluon production cross section is given by the path integral with n insertion of the operator
Oy(k, [sy,qn]) and thus contains at most n functional derivatives with respect to ¢. Since ¢
has to be set to zero at the end, this means that the rest of the expressions have to be kept
only to order ¢". Thus we treat the homogeneous terms in the Hamiltonian H; eq. (4.24)
as zeroth order. Their sum generates the ”free” perturbative evolution, and this evolution
has to be solved exactly. Just like with the evolution of s and g we see that any functional
of ¢t in this framework evolves as

Eylt] = Fy=olty] (4.47)
where t,, satisfies the equation
Oy ty @y
= 52 [ Wae & Muss = Logltouuo + anps o s50(Y =)+
ywwizteyueSe (Y = 0) + Loyuystezuvszy(Y —0) + Luyuveteyze Su:(Y —n)
- Lm,y,u,v;z (teuz Sew(Y = 1) + tozz Suy(Y —n))} (4.48)
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Note that since the evolution of s and t starts on the target side while the evolution of ¢

starts at the projectile side, the rapidity of the ”background field” s in eq. ({.4§) is Y —n.
The same holds for the later discussion of the gluon emission operator. This has to be kept
in mind although we will rarely indicate the rapidity label of s and ¢ explicitly in the rest
of this section.

Eq. (1.48) has to be solved with the initial condition
ty=o(x,y,u,v) = t(x,y,u,v). (4.49)

Formally the solution can be written as
ty(Z,9,1,0) = / Gy(Z,9,u,0|z,y,u,v) t(zx,y,u,v) (4.50)
1’7y7u7v
with the propagator
n
Gy(2,9,0,0|z,y,u,v) = <f,§,ﬂ,@l7’e><p{—/ dif'h[s(Y =), a(Y =)}, y, u,v) (4.51)
0

where h is the " first quantized” Hamiltonian that can be read off eq.(.4g). In other words
the propagator G is the solution of the differential equation

J . a _
7 GXlz,y,u,v) = 5= /{— [Mayz + Muwz = Lauwy:] Gz y,u,0) + 0 (4.52)
on 27 Jf,

HLog w002 G (X, Yy Uy 2082 0+ Ly 2032 G(R] 2, Y5 U, 0) S0+ Ly, G (|2, 2,1, 0) 82+
+ Luvyvuav;zG(i’x7 Y, z, U) SU,Z - nyyvuﬂ);z [G()_(‘Z, Yy,u, Z) SJ%U + G(i’xv 252 1)) Su,y]}

with the initial condition at n =0
ano(i’% Y, u,v) = 02,2 Oy, 5 Ou,it Ov,5 - (4.53)

Here X = (Z,9,u,0).
We will also need the BFKL Pomeron Green‘s function corresponding to propagation

of the two point function ¢ (now X = (z,7)):

d _ o _ _ -
TGP R, ) = £ [ Moy [GPFEV R ) + GO (]2, ) - GO (Rl )]
’ (4.54)
The initial conditions for the BFKL propagator: at n =0
G Rz, y) = 6250y5- (4.55)

(]

The last term in eq.(.24) increases the power of ¢ and thus is to be treated as a
perturbation. It defines the perturbation vertex 1 — 2

NP a J
\/x . )\(X7 X7 X) t(X) t(x) 5t(x) = - /$7y’u’v’z ﬁ Lx,y,u,v;z tz,y,u,z tl‘,Z,Z,U 5tx,y7u,v :
(4.56)
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Figure 1: The propagator and the vertex A.

We note that when this operator acts on a functional of the two point function ¢, ,
only, it produces another function of ¢ according to the rule (eq. (4.28))

Qs 0
— — M — 4.57
| 5 Mee b b (457)
which defines a triple ¢ vertex
¢ _ Qs
A (.%', Y, Z) = ﬂ Mx,y,z . (458)

Finally the gluon emission operator defines three types of insertions. The term A_;
annihilates the propagating field ¢t with amplitude J[s(Y —n), ¢(Y —n)], the term Ag inserts
the vertex D[s(Y —n), q(Y —n)] on the propagator of ¢t and A; splits an existing propagator
with the amplitude V[s(Y — 1), ¢(Y —n)].

This defines the set of Feynman rules for the diagrammatic representation of the ”par-
tition function” Z eq.([46). We denote each factor of ¢ in the expansion eq. (f.43) by an
empty circle. The propagator G of eq. (.52)) is denoted by a straight line. The propagator
carries an arrow indicating the direction of ”"time” Y (figure 1).

The vertex A, eq. (1.54) is denoted by a full circle. Every vertex has two propagators
entering and one propagator leaving (figurel)

Finally we denote insertions of J, D and V of eq. ((.32),eq. ([.33),eq. ([£.34) by a full
circle with horizontal line. Note that the insertions of J and D are quite complicated,

as they depend on rapidity dependent fields s(Y — ) and ¢(Y — 7). We cumulatively
represent the factors s and ¢ entering the insertion J by dashed lines (see appendix A for
more details).

To compute the n gluons inclusive cross section we proceed as follows.

1. At the projectile rapidity Y draw 1 < m < n open circles corresponding to the
expansion of X" eq. (43) to m-th order (if the projectile is a single dipole there
will be only one circle).

2. Each open circle is a sink for one propagator G eq. ((.53). Draw the diagrams of the
field theory with propagator G and vertex A of eq. (4.56) with n insertions of the
operators Og4(k;) an rapidities Yy + ;.
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Figure 2: Single inclusive gluon production.

3. The only diagrams that contribute are the ones where each propagator starts on the
source J and ends either on the vertex A or on the vertex V or on the open circle.

4. Finally we sum over all diagrams with 1 < m < n and Ny + Nj + Np = n, where
Ny, Nj and Np are the numbers of insertions of V', J and D respectively.

In each diagram the number of various vertices are related by
m—+ Ny + Ny = Ny (459)

where N is the number of vertices .

Since there are at most n insertions of the source term J, the perturbation theory in
A has to be developed at most to order n — 1.

In the next subsections we explicitly consider the examples of one-, two-, and three-
gluon inclusive cross section. For simplicity in all these examples we take the projectile as
a single dipole (xg, o).

4.3 Single inclusive gluon production

Single gluon production rate is our first example. Since J = 1 and m = 1 there is only one
diagram (figure E) which contributes to this observable. Moreover the propagator entering
this diagram is simply the BFKL propagator. The reason is that the projectile Eé) P is the
functional only of the two point function ¢, ,,. On the other hand as discussed above,
the two point function propagates independently of other components of ¢, eq. (J£.2§). The

homogeneous part of eq. (4.28) is simply the BFKL equation, and so the propagator of ¢
is the BFKL propagator.

The analytic expression for the diagram of figure 2 is

do Qs ik(2—2) ~ABFKL ~
== G V VY T 2.5 V-
dYi dk? T Jezay € (m07y0’m7y7 1) (1’,:1/72,27 1)
_ 9 ik (z—2) / Ny GEFEL (g0 ol s Y — Y1) x
& 272 z,y
x [Szf(yl) + Sﬂzc,y(yl) - Sz,y(yl) - Siz(yl)] : (4.60)

- 22 —



Y, k,
Y, k,
79 N
0 & Py
(b)

Figure 3: Double inclusive gluon production.

This reproduces the result of Kovchegov and Tuchin [R1].

4.4 Double inclusive gluon production

For the double inclusive gluon production there are two diagrams depicted on (figure fj).
The diagrams are topologically the same as those of [B4], however the propagators in figure
3 are not necessarily those of the BFKL Pomeron. The diagramm on figure 3a is given by

do |
Yy dk2 dYsy dk2 '@

Y—-Y"
B / dn GPFE (o, yolm, y;m) A (m,y, 2) GPFEE (2, 2w, v Y — Y1 — )
0
xGPIRE (2, ylug, 09, Y = Yo = 0) Ty (ur, v15 ki; Y1) Jg(ug, va; ks Ya) (4.61)

where we used Einstein’s summation convention for transverse coordinates z,y, etc..

The diagram on figure fib is

do — GBFKL(

v dk%mdk%l@ o, yolz, ;Y — Y1) D(2,y,y, 2|2, 5, 0, U; k15 Y1) X

x G(Z,9,4,0|x1,y1,u1,v1; Y1 — Y2) J(w1, 91, ur, v1; k23 Ya) . (4.62)

Note that in this diagram the BFKL propagator of two point function ¢, , become
a propagator of the three point function v . z, ¥, , > etc. below the insertion of the first
gluon emission operator. This does not happen in the single gluon inclusive calculation
nor in the diagram figure fJa. The propagation of the three point function couples to the
”background fields” s and ¢, and therefore this diagram violates the AGK cutting rules as
stressed in [[[]. There is one contribution to this diagram however which does not change
the nature of ¢. This is the insertion of Dy(z,y,Z,¥; k) of eq.([L.36):

do | — GBFKL(
Yy dk2 dY, dik2 ')

xO,y0|xay; Y — Yl) D¢(Cﬂ,y,j,g, kl) X

X GBFKL(jagPJJ’U;YVI - Y2) J(uavak%yé) . (463)
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Nevertheless it does not seem useful to separate this particular contribution as it is not the
only contribution even in the BFKL limit.

Our result coincides with that of [[L6]. The detailed correspondence is as follows. The
expression

Y-V,
/ dnGBFKL(ﬂUanO‘%y; 77) )\¢(.%',y, Z)
0

XGBFKL( GBFKL(

z, zlu,v1;Y — Y1 —n) z,ylug,v2; Y — Yo — 1)

is identical with ny of Ref. [[[f]. Thus the contribution of diagram figure3a reproduces the
first term in Eq. (32) of that reference. eq. ([.63) is identical with the very last term in
Eq. (32) in [[L], the term proportional to M (without the factor S). The expression

GBFKL(x’ y|u’ v; Y1 — Yé) J(u, v; ko; Yé)

is M(x,z,y,Y1; ke, Ys) + (2 < y) of Ref. [[§]. Finally eq. (f.63) with eq. ({.63) subtracted
is the same as the “M S” terms of Eq. (32) in [[[d]: the vertex .J(k;,Y7) brings in the factor
s (S of Ref. [[[]); the three-point function M of [if] equals

G(z,y,u,0|x1, y1,ur,v1; Y1 — Ya) J(x1, y1, w1, v1; ko; Ya)

whereas the vertex J(ko,Y2) equals d in Eq. (27) of [L].

4.5 Triple gluon inclusive production

It is straightforward to draw Feynman diagrams which contribute to the triple gluon in-
clusive production cross section. There are nine distinct diagrams that are depicted in
figure 4. We do not write down analytic expressions for the different contributions: this
is a straightforward if cumbersome endeavor. We only note that the new element that
appears here relative to the single and double gluon production is the last diagram which
involves insertion of the vertex A;. Since the vertex A; turns a three point function v into
a generic four point function ¢, this diagram contains the general propagator G below the
rapidity Y;. Thus even though the diagrams again are topologically the same as in the
BFKL Pomeron calculus [4], the propagators are those of the generic four point function
tz,y,u0 rather than BFKL propagators of ¢ .

4.6 Can we make sense of it?

The diagrammatics involved in the calculation of multiple gluon production described in
this section is simple, however an actual calculation would be quite involved. Single gluon
production apart from the solution s of the BK equation, requires only the knowledge of the
propagator of the two point function ¢, , which is simply the BFKL propagator and thus
is reasonably straightforward. The double inclusive gluon requires already the knowledge
of the propagator of the three point function 1, , .. This we do not know in general since 1
couples to the ”background” field s. For three and higher gluon production we would need
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Figure 4: Three- gluon production.

the knowledge of the propagator of the generic four point function ¢ which is even more
complicated. In this subsection we motivate a scheme which approximates the propagator

of ¢ by a known function of the BFKL propagators.

Let us first examine the evolution of the three-point function v, ,, more closely. We
rewrite the linear part of the equation of motion of v here for convenience:

« 1
877 wx,y,v = 2;_ /{ - §[Mx,y;z + M, U2 + M%U%Z] wx,y,v - vayvyvv;z¢zvy Sa,v
z

+ L‘T7v7yvvaz ¢x7y7z 5Z7U + L:B7y7m7v;z ¢Z7y7v 81.72 - L:B7y7y7v!z ’IIZ)"L.7Z7/U} ° (4'64)

We are interested in the high energy limit, where the target probed at any rapidity between
Yo and Y is black. The leading behavior of ¢ then is determined by taking the limit s — 0.
We have to be somewhat careful since s(x,z = x) = 1 even in the deep saturation regime
and this regulates the UV singularity in the virtual term in the equation. Still to get a
qualitative idea we can take s = 0 but use Q4(Y — 1) as the UV cutoff wherever a UV
cutoff is required. Taking naively s = 0 in eq. (f.64) we discover that only the first and the
last terms survive. The first, virtual term is negative and UV divergent. Assuming that it

gives the leading contribution to the evolution we find.

wx,y,v;n ~ €xp { - j_;_n ln[(x - U)2 QE(Y - 77)] } . (465)
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This of course is only valid for |z —v| > Q5 (Y — n) since otherwise the last term in
eq. ([.64) gives a large contribution which cancels the putative UV divergence. Note that
the "source” term - the second term in eq. ([.64) gives a competing contribution. At large
distance |z — v| > Q1Y — 1), s(x,v) decays very steeply as [BJ]

el =) ccexp { = 22V =) f(e — 0)? QY — )]} (4.66)

so that close to the projectile rapidity where n < Y — 7 the contribution of this term is
subleading. Closer to the target rapidity it dominates, still qualitatively the behavior is
very similar. We thus conclude that while the two-point function ¢ grows with energy
with the BFKL intercept, ¢ ., at large |z —v| > Q7 (Y — ) decreases with energy very
quickly.

It is also possible understand the behavior of 1, , ., at small values of the separation
x —v. For x = v, as explained above we have 1, ,, = ¢,,. When the separation is
smaller than Q5! but nonvanishing, we can estimate the behavior of ) by taking s = 1 in
eq. (J:64). This is obvious in the second term in eq. (J64)), since it is directly proportional
to sz ,. This also gives the leading contribution in the third (fourth) term, since the z-
integral is peaked at z = v (z = x). Setting s =1 in eq. (f1.64) we obtain the equation

a 1
677 T;Z)m,y,v = 2;_ /{ - §[M:v,y;z + M, 032 + MI,U;Z] T/Jm,y,v - L:v,y7y,v;z ¢z,y
z

+ L‘T7v7yvvaz ’IIZ)"L.7y7Z + L:B7y7m7v;z ¢Z7y7v - L:B7y7y7v!z ’IIZ)"L.7Z7/U} (4‘67)

It is easy to check that this equation is solved by

¢:v,y,v — %((ﬁm,y + ¢y,y — ¢g),v) (468)

if ¢, satisfies the linearized version of eq. ([.2§) - the BFKL equation.

In fact the relation eq. ({.6§) is required by the definition of t; , ., eq. (f.23) in the
BFKL limit, where S(z) = 1 +ia(z) and S(z) = 1 + ia(z) are close to unity. Expanding
Uyyyo 0 second order in o and & and taking the correlator of a to be equal to correlator
of & (in accord with the discussion leading to eq. ({.21])) we find the relation eq. (f.6§)
directly from the definition of . The same argument more generally gives

1
ti’%yvuﬂ) = 5 (¢$7u + ¢y7v - ¢1’,U - Qby,u) (4-69)

This again can be checked to solve the equation of motion eq. (f.48) with s = 1.

We stress that eq. ({.68) and eq. (f.69) hold only in the linearized regime for s = 1.
Nevertheless this means that at small separations, |z —v| < Q7Y |y —u| < Q3! the
propagator of the four point function ¢ behaves as

G(x05y05u05v0|x’y’u’v;n) = (470)
1
5 <GBFKL('I(]5 U0|$, u; 77) + GBFKL(yOa ’U(]|y, v; 77)

- GPFRY ol vin) = GO, ol i)
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Next let us take a closer look at the gluon emission vertex eq. ([{32), eq. ({33,
eq. ({.34). We will zoom into one of the terms in the vertex, but the same considerations
exactly go through for all other terms. Consider one of the terms in Ag

0
(Ny,zﬂhg + NJB,Z,U,,E - Nz,z,v,é - Ny,zy“@) qzyyvuvg t1'72727v5 (471)

tw,y,u,v
Let us assume for a moment that the coordinates of the field ¢, , .. entering this vertex
are close together, so that |z —v| < Q5 1; |y —u| < Q5! where Q; is defined at the rapidity
Y — 1 of the quadrupole operator ¢ in eq. (f.71). Since g, 44z < 1 for |z — z| > Q; 1, the
coordinates of the outgoing field ¢ are also pairwise within the same distance scale Q'
The same is true for all the other terms in Ag.

Thus the vertex Ay itself picks only the region of the phase space in the propagator
G, in which the propagator can be taken as eq. (1.7().

The vertex A; is different in this respect, since the coordinates z and z of the outgoing
field are not necessarily close to each other. This vertex appears only for triple and higher
gluon production. For these multigluon observables it is therefore necessary to include
the large distance suppression factor in the propagator itself. As we have discussed above
this suppression is the property of the linearized evolution equation for ¢. In lieu of exact
solution of this equation one can resort to modelling. The following form suggests itself as
a reasonable approximation,:

1
G(I’Q, Yo, Uo, UO‘% Y, u,v; 77) = §SJ37U(Y - 77)3y7u(Y - n) X (472)
GBFKL('%'O7 uO’xa U, 77) + GBFKL(y07 UO‘% v; n)

_ GBFKL( ) — GBFKL(

T, vo|x, V57 Y0, uoly, us )

It obviously has correct behavior both at small and large separations and the crossover in
the behavior occurs on the correct distance scale.

To summarize, the diagrams for single gluon production contain only the propagator
of ¢ and thus are the same as in the BFKL Pomeron calculus [P4]. For double inclusive
gluon production since the vertex A; does not appear, the leading contribution is again
given by the diagrams where the propagators of 1) can be taken at s = 1°

Gy (w0, Yo, volz,y,v;n) = (4.73)

1
5 (G o, yolw, ym) + GPFEE (yo, voly, vim) — GPF (o, volw, vi )

2There is a slight subtlety here, since the BFKL propagator leads to diffusion in transverse space. Thus
one can worry about the fact that in figure 3b the transverse spread between the points in the propagator
entering the vertex J(k2) is not necessarily small even if at the vertex D(k1) the spread was within Q.
If that where the case our argument about the reliability of the approximation eq. () would be invalid.
However the diffusion in the BFKL equation is rather slow, so that the growth of radius is slower than the
decrease of Qs(Y — 1) as n grows towards the target. It therefore follows that even allowing for diffusion,
the transverse spread always stays small enough so that the approximation s = 1 can be used for the
propagator.
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In this approximation the propagators again become those of the BFKL Pomeron and the
leading contribution preserves the AGK cutting rules, modulo the fact that the field s
couples directly in the vertex D(kj). This conclusion agrees with the argument of [P4].

However for triple gluon production and higher we cannot use BFKL propagators to
approximate the propagation of 1 and ¢ in the external field s. Thus the interaction with s
appears not only at the gluon emission vertices and the AGK cutting rules are irretrievably
lost.

However, we believe that if the rapidities of all measured gluons are far from the target,
a good quality approximation for all momenta k except possibly k; ~ Qs(Y —Y;) can be
obtained by using the Feynman rules with the vertices given in the previous subsections
using as the propagator of the field ¢ eq. (.79). The calculation then requires only the
knowledge of the BFKL propagator, and naturally the solution of Kovchegov equation s, .

5. Discussion

In this paper we have developed the formalism to calculate multigluon inclusive cross
section at high energy for arbitrary number of gluons. The formulae in the full unabridged
JIMWLK formulation are complicated and at the moment it is not clear how to develop
a feasible calculational approach in this regime. We have also discussed the dipole model
limit of the JIMWLK approach. In this case the expressions simplify dramatically. We
have been able to develop a simple diagrammatic technique based on Feynman rules for
calculations in this model. We have shown that for the double gluon inclusive production
one recovers the results of [[[]. We note that the formalism can be extended easily to other
observables. In appendix B for example we consider gluon emission with fixed momentum

transfer of the valence part of the projectile wave function.

We confirm that the AGK cutting rules are violated for multigluon production. The
violation is due to the appearance of non Pomeron exchanges even within the dipole model.
The calculation involves propagators of three- and four point "multipoles” propagating in
the external field s. However we presented an argument that for the double inclusive gluon
production the leading high energy behavior is indeed given by the diagrams preserving
the AGK cutting rules in accordance with conclusion of 4]. On the other hand for three
and higher gluons the AGK rules are genuinely violated.

Perhaps the most remarkable result of this paper is that only finite number of multi-
poles (namely multipoles which depend on two, three and four transverse coordinates) is
needed for the calculation of any number of emitted gluons.

The propagators of these multipoles except for the dipole are not known analytically,
but the problem is still on an entirely different level of complexity than the full JIMWLK.
We have suggested an ansatz for the propagators based on its known UV and IR behavior
which we believe should be a very good approximation for calculating the cross section.

~

It is interesting to note that although the vertex in the Hamitonian eq. (J.26) con-
tributes only perturbatively to a fixed order when the number of gluons is fixed, one could
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Figure 5: The "source” term J in the gluon emission vertex.

in principle calculate other observables where the full evolution of ¢ will enter the fray.
An example of such an observable could be average multiplicity. Since the evolution of
t is nonlinear and undoubtedly leads to saturation of growth of ¢ this suggests that the
average multiplicity must be growing much slower with energy than in the pure BFKL
calculation. This slowdown is of course affected by the saturation of s but mostly by the
saturation of ¢. It would be interesting to study this question in detail. In particular it is
possible that classical solutions of the evolution equation for ¢ could be directly related to
physical observables, much like classical solutions of field equations are related to particle
production in QCD [RY.
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A. Vertices

In this appendix we collect explicit expressions for the vertices J and D which enter the
gluon emission vertex egs.([.33, [1.:33).
J(.%'7 Yy, u,v:z, 2) = (Ny,z,v,é + Nx,z,u,i) Sz,y Suv T (N$,Z,’U,5 + N, 7z,u,Z) YERTRIRY
+ (Nx,z,v,i - Ny,z,v,i) S,z q,z,y,u,v + (Ny,z,u,i - Nm,z,u,i) Sz,y qz,zu,v
+ (Nx7Z7U72 - '/\/$7Z7u72) 827/1) q$7y7u’2 + (./\/y727u’2 - Ny7z7v’2) Su72 q$7y727v
+ (Ny7z7v72 + '/\/;'7'27“72 - nyzyvvg - Ny727u,2) qz,y,u,i q:v,z,i,v (A'l)
For the two point function ¢:
co 3 — 2 2 2 2 2 2
J¢(x,y, 2, Z) - Ny,z,x,i (Sz,i + S:B,y — Cx,z T Sy,i) +Nm,z,y,2 (Sz,i + S:B,y - Sz,y - S

s )
+ N, 7z,y,2(3§,2 + Sz,y - 32,2 -1 +Nm7z7m,2(3§,m + Si,z - 32,2 -1 (A.2)

The vertex D is given by

D(z,y,u,v,Z,5,0,0;2,2) = Ny 20z + Ny.2u.2)050y 50u.a00,5 (A.3)
+ Nazwz — Ny zwz) Sez0z,2 05y 0au0s0 + Ny 2wz — Nuzwz)Szy 0z, 05,2 0a,u 05,0
+ NMazwz — Nozwsz)Sz00z.2 0,y 0u,udp,z + Nyzuz - Nyzvé) Su,2 03,2 0.y Oa,z 05,0
+ WNyzwz + Nezwz — Nezwz — Nyzwz)(@eyuz0z.0 05,2 0z 0.0 + Qo220 02,2 O,y Oa,y 0p,2)
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Finally the vertex V is given by
V(x,y,u,v; Za 2) = (Ny,Z,U,Z + Nx,z,u,é - Nx,z,uz - Ny,z,u,i) (A4)

The vertex eq. ([A.J) coincides with s in eq. (20) of [[[g].3

B. Multi-gluon production with momentum transfer

It is straightforward to extend the formalism discussed in this paper to the case when
in addition to emitted gluons, the transverse momentum transfer of the valence part of
the projectile wave function is fixed. The only modification is that of the matrix element
Oo[S, S]. To impose momentum transfer p we take [[L]]

Oo[S, Slp = /dQB d?a P 2P ST(2) S(z + a)] (B.1)
Here B stands for impact parameter of the projectile. In the dipole limit this becomes
00lS, 8], = / B dac P SEP[L 1 oy pianial (B.2)

One important difference from the formulae discussed above is that the four-point function
t enters already on the level of the single inclusive gluon cross section.

For a single dipole projectile (B = (z¢+yo)/2) the diagrams are topologically identical
to those given in section [l The only difference is that the ”sink” on which the propagators
end is given by eq. (B.4). The expression for the single inclusive gluon production is

dN <
m == /d2x0d2aezpaG(x07y07y0+a7x0+a‘x7y7u7v;y_Yl)J(x7yauav;k7Y1)
(B.3)

We can also consider in this framework the case when the projectile consists of a single
quark. The observable then corresponds to the process ¢ + A — q(p) + X + g(k1; Y1) +
g(ka2;Y2) + .... To this process we take as the projectile single dipole with the transverse
coordinate of the antiquark at infinity:

OnS.Slp = [ @0+ tug sl (B.4)

The result for the single inclusive gluon production is

dN

m = /d2330 d2@€ipaG(¢0,y0,yo+a,~"30 +alz,y,u,v) J(x’y’uav;kyyl)bO*’OO

(B.5)

3Note that the notations in this paper differ from those in so that the letter s denotes a different
quantity than in [@]
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The propagator G(xo, Yo, Yo + a, o + a|z,y, U, v)|y,—oc diverges in the infrared and has to

be regularized. This is of course the reflection of the fact that the cross section for a color

nonsinglet projectile is logarithmically IR divergent. If the gluon is emitted at the same

rapidity as the valence quark the expression becomes

do

aY, di2 d%p = /dQBdQQGipaJ((L'ananO+a,.730+a; kY )|yo—o0 (B.6)

which agrees with the result of [[[7].
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